A

REVIEW OF INDUSTRIAL CORROSION PROBLEMS
IN SALINE ENVIRONMENTS

Conditions when corrosion problems expected are well understood.
CREVICE CORROSION

e For Ti-2, high temperatures (>70°C) and/or low pH (<3) required

e Conditions inevitably continuously oxidizing

e At flanges or under certain gasket materials

¢ In heat exchangers at tube-to-tubesheet joints, under salt deposits,
in the presence of hydrolyzable salts (e.g., Mg, Ca, Zn, Al chlorides)

e Not observed under biofilms or antifouling paints
e Problems avoided by selection of Ti-12 or Ti-7 (0.2wt.% Pd)

PITTING

o Not failure process in seawater applications

e Observed in hot salt evaporators for T > 130°C

e Shallow pitting when embedded Fe particles present
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A

SEAWATER APPLICATIONS

Titanium is fully resistant to natural seawater regardless of chemistry
variations and pollution effects.

Corrosion rates (over 20 a) <<0.3 um-a!

**(Similar rates measured for Ti buried in soils)

Since 1959, Ti-2 has become the material of choice for heat transfer
applications

‘o Wall thickness steadily reduced from 1.24 mm to 0.7 mm

e Not one failure has been reported in this application over 35 a of
service

e 120,000 km of welded Ti tube used in seawater-cooled power plant

condenser service with no reported failures due to seawater corrosion
in25 a

e 15,000 km of welded Ti tube used in Japanese desalination plants
(since 1974)
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A

SEAWATER APPLICATIONS

e 6,000 tonnes (last 10 years) of welded tube and tube plate
used in Japanese power plant condensers

e Fatigue strength and toughness of titanium are unaffected by
seawater exposure

e Lean Ti alloys (e.q., Ti-2, Ti-12) are immune to SCC in
seawater

e Various test exposures of titanium alloy samples in the sea
for periods as long as 20 years have demonstrated immunity
to microbially induced corrosion despite extenswe micro-
and macrogrowth on metal surfaces
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MICROBIALLY INDUCED CORROSION

e “The resistance of titanium alloys to MIC in operating systems
and laboratory experiments has been repeatedly demonstrated.”
(5 references). B.J. Little et al. (Corrosion 93; paper 308)

e A review of the literature and service experience fails to reveal a
single titanium alloy component failure related to MIC. This
record exists despite its extensive use in plate/frame and shell-
tube heat exchangers, vessels, pumps, valves and piping
systems handling highly biologically active processes and raw
cooling water streams over the past 30 a......”

e Various test exposures of titanium alloy samples in the sea for
periocds as long as 20 years have demonstrated immunity to
attack despite extensive micro- and macrogrowth on metal
surfaces.”

R.W. Schutz (Materials Performance 30, 58 (1991))

_—
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AU

EFFECT OF WELDING ON THE
CORROSION OF TITANIUM ALLOYS

e The welding of Ti-2 and Ti-12 is a common and
well-established process with QA procedures for
producing qualified welds

e Poor welding of Ti-12 can change the
microstructure and precipitate intermetallics, but
these changes are not detrimental to the corrosion
performance of the weld or the heat affected zone

e Susceptibility to HIC is reduced by welding, partly
due to an increased randomization of the
microstructure in the heated zones
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Crevice Corrosion is the most likely localized Corrosion
process under Disposal Vault Conditions

XA .
| Hydrolysis

Acidification // cr in
/ /

4 prot Oxygen
Titanium roton ‘Reductio
Dissolln Reductlon L/.'

-'9,47 Hydrogen
- Ti ~~._ Absorption __.

o

Oxygen
leduction

-
-----------

Passive <«——— Active > Passive

Factors Controlling Crevice Corrosion

— Vault Temperature
— Auvailability of Oxygen
—  Groundwater Salinity
— Materials Propeﬁies

Container failure is assumed to occur when the
crevice corroded front exceeds the corrosion
allowance. Then, mechanical integrity is assumed to
be lost and the container will collapse or buckle.
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Assessment of Container Lifetimes
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Long-lived Ti containers (nominal 6.35-mm wall thickness)

Extent Remaining Film Fractional Failure | Container “
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(mm) | allowance law (a)
(mm) (nm/a)
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The second possible Localized Corrosion Process
is Hydrogen - Induced Cracking (HIC)

 Hydrogen
sorption

“Habs Hydrogen
S \'\lr%;port

Ti Hx

H2

H+

Hydrogen
Precipitation
—_——

Crack

Propagation

[H] > [H¢]

o Hydrogen absorption rapid under acidic
crevice conditions.

e Hydrogen absorption slow or negligible
under passive conditions.

Crack propagation occurs when the concentration

of hydrogen in the metal is greater than the
critical amount ([H¢]) required to make the
material susceptible to HIC.

The container is then assumed to fail rapidly,
since tensile stresses are assumed to be always
sufficient to drive crack growth.

MP96-028.4



THE CRITICAL HNYDROGEN CONCENTRATION IS DETERMINED
USINE SLOW STRAIN RATE TESTS ON COAPRACT TENS/ION
SPECIMHENS PRELORDED TO R ANOWN NYOROSEN LEVEL.
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THE FRACTURE TOUGHNESS oOF Tc—2 (Ano TC-127) ARE
NOT SIGNIFICANTLY AFFECTED ONTIL THE KNYOROGEN

CONTENT EXCEEOS A CRITICAL VALUE,

Clarke et al. CORR. scl.

36,287-509% C 1994)



Amount of
Hydrogen
absorbed by
the material

‘Criteria for Failure by Hydrogen Induced Cracking

| Crit_i(':él} HVdro;g
above which

‘Determined by Corrosion
Testing and a Model for Crevice
and Uniform Corrosion

Time Since Emplacement

Since Crack Growth Rates could be
fast and difficult to predict, we assume
Failure occurs as soon as the material
becomes susceptible

. e
o t Ste2S Crack Growth
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&

The measurement of corrosion penetration rates
is a widely accepted procedure in determining
lifetimes of corrodible structures and fitness for
service guidelines.

o statistical analyses of pit depths.

e measurement of crack growth rates.

e This approach has been peer-reviewed in many
publications, conference presentations and international
workshops. -

e A model based on the inability to initiate crevice corrosion
has been developed for Ti-16.(0.06 wt % Pd), and is
referenced in the Vault Model Report.



A Totally Independént Procedure has Been
used to check our Model Predictions

Development of a Damage Function

1200
1000
800 -
600 -
400 -
- . Aerated
200 - 0.27 mol ";; NaCl
[ | 100C
I | 1
500 1000 1500

Time (hours)
Viaximum Depth '

Increasing Time

The Form of this Damiage Function is common to many materials
— Pitting of Copper

—— Underdeposit Corrosion/
Pitting of Carbon Steel

— Pitting of Stainless Steel
MP96-028.9



Predictions of Container Lifetimes using
a Damage Function approach are consistent
with those of the Vault Model

antainer
imension
(mm)
|_WallThickness 'K -~ |
6 =
| __Corrosion Allowance W&~ |
4

T
102 1 102 10* 10°

Time Since Emplacement (years)

Lifetimes
- Predictions from 1200a - 7000a
- Vault Model
%%%% Predictions from 350a - 230000a
T Extrapolated Damage
Function at100°C
— ‘Depth of penetration when

all the O2 available in a borehole
has been consumed
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Evolution or vauit vonaiuons

The Potential Corrosion Scenario
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Physical Layout of Disposal Room
Buffer Containers
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MECMANISH FOR THE CORROSION OF COPPER NUCLERR WRSTE
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CORROSION TESTS N COMPACTED BUFFER.
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CURROUSION OF COFPFPER CONTAINERS
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The rate of consumption of oxygen for the in-room
Emplacement Configuration has been calculated using
a one dimensional representation of the
layers around the container
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PREDICTED CORROSION POTENTI/IRA AND
CORROSION CURRENT,
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r Containers

11um7
Pitting

Extreme-value statistical analysis

Max. pit depth after 10%a:
6.0mm

Iotal wall penetration

<Imm

Coptaine lifetime
>10%a

All O, trapped in vault (27 mol/container),
evenly distributed as Cu(l) over container

170pm

Pitting
Pitting factor of 5
Pit depth 0.85mm
Total wall penetration
<2mm

Container lifetime
>10%




Evolution of Vault Conditions and Predicted
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